Янв 28

3D биопечать функциональной человеческой кожи

По оценке ВОЗ, ежегодно около 11 млн пациентов в мире нуждаются в пересадке кожи после ожогов, а у 265 тыс. пострадавших повреждения кожи настолько обширны, что ведут к летальному исходу. Пересадка кожи требуется также в результате различных патологий, инфекций, после операций по удалению раковых опухолей, из-за генетических и соматических болезней.
Обычно для восстановления кожи используются аутогенные трансплантаты, когда участок кожи берут у самого реципиента. К сожалению, при большой площади ожогов бывает невозможно найти подходящие участки в достаточном количестве.
Медики пытаются исследовать разные технологии для получения подходящего заменителя, но пока что результаты далеки от идеальных. Результаты ненадёжные: материал получается слишком хрупкий, с ним трудно работать, после пересадки он слишком чувствителен к контакту. В общем, существующие методы изготовления дают чрезвычайно непредсказуемый результат.
В последние годы с помощью новых технологий учёным удалось разработать гораздо более продвинутые субстраты, в которых кожные и эпидермальные компоненты динамически взаимодействуют друг с другом как во время созревания в лаборатории, так и после трансплантации на тело человека. В частности, для изготовления таких субстратов сейчас активно применяется белок фибриноген (и его производный белок фибрин) — компонент плазмы крови, который синтезируется в печени. Этот белок оказался отличным материалом для искусственного субстрата кожи — он дёшев, доступен в большом количестве и удобен в работе.
Около 10-ти лет группа испанских исследователей впервые изготовила и опробовала субстрат искусственной человеческой кожи из плазмы кожи: см. статью “Clinical Results of an Autologous Engineered Skin”, опубликованную в марте 2006 года в журнале Cell Tissue Bank (doi:10.1007/s10561-004-7253-4). Клинические испытания показали обнадёживающий результат, но сам процесс пересадки оставался сложным. Во-первых, требовался исключительно квалифицированный персонал: приживление такого субстрата — это научный проект, который выполняется учёными в лаборатории. Было практически нереально повторить его в средней больнице. Кроме того, выращивание субстрата занимало долгое время: 3-4 недели для выращивания одного квадратного метра. Continue reading


>>>БАЗЫ ДАННЫХ(EMAIL, ТЕЛЕФОНЫ). БЕСПЛАТНО.<<<

Янв 27

Диагностика онкологии с помощью смартфона

Исследовательская группа из Стокгольмского и Уппсальского университетов разработала бюджетный, портативный 3D печатный прибор для выявления злокачественных опухолей вдали от специализированных лабораторий. Оптико-механическое приспособление заменяет мультимодальный микроскоп и работает в паре со смартфоном, позволяя исследовать образцы живых тканей на наличие характерных генетических маркеров.
Устройство использует два лазерных диода для многоцветной визуализации и белый светодиод для работы в режиме светлого поля. Образцы размещаются на платформе с подвижностью по всем трем осям. Перед камерой смартфона устанавливается линза с фокусным расстоянием 2,6 мм.
Устройство обнаруживает наличие раковых клеток с помощью флуоресцентных маркеров. В шести опытах по исследованию образцов опухоли прямой кишки прибор показал стопроцентную эффективность. Как поясняют исследователи, новый прибор может найти применение не только в молекулярной диагностике онкологических заболеваний, но и выявлении вируса Эбола, а также определении устойчивости возбудителей туберкулеза к антибиотикам.


>>>БАЗЫ ДАННЫХ(EMAIL, ТЕЛЕФОНЫ). БЕСПЛАТНО.<<<

Янв 26

Bionic Aircraft – 3D печать в авиастроении

Технологии 3D печати и 3D сканирования пользуются растущим вниманием со стороны производителей, но пока не находят широкого применения в авиастроении. Разработкой новой рабочей модели занялся консорциум из десяти европейских компаний и научно-исследовательских учреждений, запустивших совместный проект «Bionic Aircraft».
Непосредственно авиастроительную отрасль в группе представляет концерн Airbus, но одну из основных задач придется выполнить IT-компании CENIT, занимающейся разработкой универсального программного обеспечения для автоматизированного проектирования бионических конструкций с упором на использование аддитивных технологий.
«Одна из главных причин, по которой аддитивное производство пока что не оказало большого влияния на авиастроительную отрасль заключается в сложности дизайнерского процесса. Так как проектирование еще не автоматизировано, процесс требует применения целого набора разных программных пакетов. Кроме того, специализированное программное обеспечение необходимо для обработки данных перед 3D-печатью. Таки образом, на этапе проектирования инженерам приходится постоянно переключаться с одного инструмента на другой. Все это требует дополнительных временных затрат и повышает стоимость работ. CENIT работает над упрощением процесса. Для этого мы интегрируем все этапы проектирования, обработки данных и 3D-печати в единый набор инструментов для бионического дизайна», – поясняет Михаэль Шварц, менеджер отдела аэрокосмических инноваций компании CENIT. Continue reading


>>>БАЗЫ ДАННЫХ(EMAIL, ТЕЛЕФОНЫ). БЕСПЛАТНО.<<<

Янв 25

Первая космическая фабрика

Компании Made in Space и Axiom Space заключили соглашение о сотрудничестве в разработке первой коммерческой космической станции. Проект осуществляется под руководством Майкла Суффредини, основателя Axiom Space и бывшего руководителя программы МКС со стороны NASA. Axiom планирует создать аналог Международной космической станции с помощью частных инвестиций. Первым этапом постройки должен стать запуск основного модуля в 2020 году с последующей стыковкой с МКС для испытаний бортового оборудования. После завершения эксплуатации Международной космической станции модуль планируется использовать в качестве основы для новой орбитальной конструкции.
Новая космическая станция должна выполнять те же функции, что и МКС, но быть более доступной для коммерческого сектора. На станции планируется осуществлять эксперименты и принимать космических туристов, а главным отличием станет орбитальное изготовление материалов и готовых продуктов с уникальными характеристиками, возможными только благодаря производству в условиях микрогравитации.
Одним из первых проектов станет аддитивное производство улучшенных оптоволконных кабелей для использования на самой станции и доставки на Землю. Компания Made in Space, прославившаяся первыми космическими 3D-принтерами, будет участвовать в разработке бортового производственного оборудования, использующего технологии 3D-печати.


>>>БАЗЫ ДАННЫХ(EMAIL, ТЕЛЕФОНЫ). БЕСПЛАТНО.<<<

Янв 24

Tri-D Dynamics – 3D печатные ракетные двигатели

Стартап Tri-D Dynamics, организованный студентами магистратуры Университета Пердью, намеревается использовать аддитивные технологии в массовом производстве недорогих ракетных двигателей.
«Изготовление жидкотопливных ракет тягой в одну-две тонны с помощью гибридных аддитивных методов занимает от пары дней до двух недель. Двигатели можно печатать целиком, либо в виде отдельных компонентов для последующей сборки», – рассказывает Александр Финч, соучредитель Tri-D Dynamics. Как поясняет его коллега, Дипак Атиям, на изготовление аналогичных двигателей традиционными методами требуется гораздо больше времени, около трех-четырех месяцев. Кроме того, обычное производство выливается в более высокие расходы. «Как правило, требуется пара фрезеровщиков, плюс сварщики, инспекторы качества, испытатели и другие специалисты, в зависимости от сложности двигателя. Используя 3D-принтеры, можно в идеале обойтись одним-двумя операторами», – считает Дипак.
Целевым рынком для компактных ракет с 3D-печатными двигателями должен стать коммерческий сектор, специализирующийся на микроспутниках. Молодые предприниматели готовы работать как с частными компаниями, так и с государственными предприятиями, заинтересованными в недорогой технологии доставки миниатюрных аппаратов на орбиту. Проектированием и изготовлением ракет Финч и Атиям занимаются как минимум с 2013 года. В прошлом году они участвовали в студенческом проекте Vulcan-1 – первом в мире запуске ракеты с полностью 3D-печатным двигателем, изготовленным методом прямого лазерного спекания металлических порошков (DMLS). Успешный запуск помог ребятам получить стажировку в NASA и нескольких профильных компаниях, связанных с аэрокосмической отраслью. Continue reading


>>>БАЗЫ ДАННЫХ(EMAIL, ТЕЛЕФОНЫ). БЕСПЛАТНО.<<<

Янв 22

VR 3d модель ребёнка

VR 3d модель ребёнка

VR 3d модель ребёнка

Виртуальная реальность – это не обязательно видеоигры и социальные сервисы, которые нам не так давно представила компания Facebook. Эта технология способна войти во множество сфер человеческой жизни как в профессиональном плане, так и в более бытовом смысле. Взять вот хотя бы молодых мам и пап, которым наверняка будет интересно взглянуть на своего пока ещё не родившегося ребёнка посредством VR-гарнитуры. И это совсем не то же самое, что видеть малютку на экране аппарата для УЗИ-исследований. Ведь ты можешь полноценно осмотреть ребёнка буквально со всех сторон.
Пара молодых родителей из Финляндии задались целью сделать полное 3D-сканирование своего будущего ребёнка, после чего перенести получившуюся модель внутрь виртуальной реальности, чтобы его можно было не просто изучить во всех подробностях, но и показать во всей красе бабушкам и дедушкам. Согласитесь, это куда более интересно, нежели показывать родственникам чёрно-белые размытые УЗИ-снимки, глядя на которые довольно сложно понять, что перед вами ребёнок.
Заручившись поддержкой знакомых, работающих в одном медицинском центре, родителям удалось воспользоваться ультразвуковой системой производства GE, чтобы отсканировать ребёнка. Родители пытались найти описание подобных случаев в Сети, но поиски не увенчались успехом. Вероятнее всего, это первый случай переноса образа пока ещё не родившегося ребёнка внутрь виртуальной реальности. Именно поэтому молодой отец связался с производителем УЗИ-аппарата, чтобы получить советы по конвертированию 3D модели в подходящий для VR формат. Специалисты GE охотно поделились своим опытом и прислали подробные инструкции. Continue reading


>>>БАЗЫ ДАННЫХ(EMAIL, ТЕЛЕФОНЫ). БЕСПЛАТНО.<<<

Янв 19

3D печать форм для изготовления автопокрышек

Компания Michelin намеревается использовать аддитивные технологии в производстве форм для автомобильных покрышек. Главной целью нового проекта станет создание покрышек с увеличенным жизненным циклом, устойчивых к износу, включая покрышки с неглубокими ламелями. «3D печать позволяет изготавливать формы с очень сложной детализацией. Идея состоит в создании покрышек с регенеративными протекторами», – поясняет Пьер Робер, директор научно-исследовательского центра Michelin в Ладу, Франция.
Проект будет реализован совместно с промышленной группой Fives в рамках совместного предприятия «AddUp Solutions». Fives специализируется на разработке и производстве машин, обрабатывающего оборудования и производственных линий для крупных промышленных предприятий, задействованных в производстве алюминия, стали, стекла, цемента, а также представляющих автомобильную, аэрокосмическую и энергетическую отрасли.
Сотрудничество в области аддитивных технологий между Michelin и Fives было налажено еще в 2015 году, а совместное предприятие изначально носило название «Fives-Michelin Additive Solutions». Помимо аддитивного производства, AddUp Solutions занимается и разработкой собственного оборудования для 3D-печати: на прошлогодней выставке Formnext компания продемонстрировала первый 3D-принтер собственной разработки под названием «FormUp 350». Устройство предназначено для плавки металлических порошков с использованием нескольких лазерных излучателей одновременно.


>>>БАЗЫ ДАННЫХ(EMAIL, ТЕЛЕФОНЫ). БЕСПЛАТНО.<<<

Янв 18

3D печатные беспилотные автобусы Olli

3D печатные беспилотные автобусы Olli

3D печатные беспилотные автобусы Olli

Компания Local Motors, активно продвигающая идею 3D печатных автомобилей, заключила сделку с немецким железнодорожным перевозчиком Deutsche Bahn по поставке беспилотных маршрутных автобусов Olli, изготовляемых с помощью аддитивных технологий.
Deutsche Bahn в соглашении представляет дочерняя компания InnoZ, выполняющая роль научно-технического подразделения. Первые автобусы уже вышли на маршрут, обслуживающий берлинский деловой центр Euref Campus, где располагаются офисы нескольких десятков инновационных компаний из энергетической, перерабатывающей и транспортной отраслей.
Пока что проект носит экспериментальный характер и не отличается большим размахом – маршрутки работают с девяти утра до пяти вечера, а дневной объем перевозок составляет порядка ста пассажиров. Для организаторов же важны другие аспекты, а именно ознакомление публики с новой технологией и испытания бортовых систем, включая искусственный интеллект IBM Watson’s Internet of Things (IoT) for Automotive, на способность адаптироваться к возникающим ситуациям и избегать дорожных происшествий. В течение шести месяцев партнеры намереваются открыть еще один маршрут, связывающий Euref Campus с ближайшей железнодорожной станцией Deutsche Bahn.
В настоящее время компания Local Motors достраивает в Берлине одну из мини-фабрик по производству 3D печатных автомобилей, следуя заявленным планам по развитию децентрализованной производственной сети из сотни малых предприятий, разбросанных по всему миру. Берлинская фабрика занимает площадь в 1500 кв. метров и должна в течение текущего года выпустить несколько десятков микроавтобусов Olli.


>>>БАЗЫ ДАННЫХ(EMAIL, ТЕЛЕФОНЫ). БЕСПЛАТНО.<<<