АО «Обуховский завод» из Петербурга (входит в состав концерна «Алмаз-Антей») приступило к выпуску атомайзеров и 3D-принтеров для изготовления песчаной литейной оснастки. В оборудовании якобы используются только отечественные комплектующие.
Первый заказ на поставку аддитивного оборудования планируется выполнить до конца текущего года, сообщает пресс-служба Северо-Западного регионального центра концерна «Алмаз-Антей».
Конструкторское бюро ракетно-космической техники Воронежского государственного технического университета (ВГТУ) разработало жидкостный ракетный двигатель малой тяги, использующий систему охлаждения с регулируемыми пористыми структурами.
Керосин-кислородный двигатель полностью изготовлен с применением аддитивных технологий, сообщает Минобрнауки РФ. Главная особенность разработки — запатентованная система охлаждения с регулируемыми пористыми структурами в охлаждающем тракте, повышающими эффективность теплообмена, ресурс и надежность двигательной установки.
Компания Apis Cor из Иркутска, теперь работающая в США — примет участие сразу в 2-х программах по постройке доступного жилья для малообеспеченных семей с использованием строительного 3D-принтера собственной конструкции.
Apis Cor сотрудничает с компанией VPG Construction, строительным дивизионом девелоперской группы VPG Enterprise, по двум проектам. Первый предусматривает возведение тридцати одного дома для «хронически бездомных» в поселке Eden Village города Уилмингтона, штат Северная Каролина. В число жильцов нового поселка войдут пациенты местной больницы с хроническими болезнями, требующими комфортных условий проживания для успешного лечения.
Разработчики Сибирского Федерального научно-клинического центра ФМБА России в 2021 году провели более четырехсот операций по установке эндопротезов крупных коленных и тазобедренных суставов производства компании «Синтел», резидента особой экономической зоны «Томск».
В настоящее время научно-производственная компания «Синтел» ведет научные исследования и разработки в области создания новых имплантатов и технологий лечения ортопедических заболеваний совместно со специалистами Сибирского Федерального научно-клинического центра ФМБА России. Один из проектов — по производству эндопротезов тазобедренного сустава с антибактериальным покрытием — уже находится на этапе испытаний в системе Федеральной службы по надзору в сфере здравоохранения (Росздравнадзора РФ).
Институт прикладной физики РАН развивает метод аддитивного производства элементов СВЧ-электроники, основанный на фотополимерной 3D-печати с дальнейшим покрытием изделий слоем меди. Метод позволяет экономить время на переходе от теоретических моделей к экспериментальной верификации, а также создавать электродинамические элементы сложных форм, трудных или недоступных станкам с ЧПУ.
Развитие технологии химической металлизации фотополимерных структур (Chemical Metallization of Photopolymer-based Structures, CMPS) и ее тестирование разделены на два направления. Первое — создание элементов приборов, предназначенных для работы с малым уровнем мощности для так называемых «холодных» измерений. Подавляющее большинство таких элементов — различные волноведущие элементы (волноводы, преобразователи, высокочастотные фильтры). Для реализации таких изделий достаточно тонкого медного слоя на поверхности образца, напечатанного на фотополимерном 3D-принтере.
Мягкие инвазивные нейроимплантаты NeuroPrint, способные проводить электрические сигналы в спинной и головной мозг, помогают восстанавливать утерянные функции организма, включая подвижность.
Технология, разработанная международной научной командой с участием исследователей из Санкт-Петербургского государственного университета и Дрезденского технического университета, уже показала эффективность в исследованиях на млекопитающих и рыбках данио-рерио: имплантаты демонстрируют высокий уровень биоинтеграции и функциональной стабильности, не уступая аналогам в работе с восстановлением двигательных функций конечностей и контролем функций мочевого пузыря.
Исследователи из Калифорнийского университета в Санта-Барбаре сконструировали робота, прыгающего на высоту более 30 метров с невероятным ускорением. По словам учёных, целью создания этого робота послужил поиск физического предела при использовании механики биологических существ.
Робот похож на игрушечную ракету, сидящую на двух пересекающихся кольцах. Последние представляют собой компрессионные дуги из углеродного волокна, соединённые резиновыми лентами. Для прыжка двигатель приводит в движение шпиндель, натягивая трос, который растягивает резиновые ленты и одновременно сжимает дуги из углеродного волокна. Механизм защёлки высвобождает энергию для катапультирования робота в небо. Во время прыжка робот разгоняется с нуля до 96,6 км/ч за 9 миллисекунд, достигая силы ускорения 315 G.
При создании механизма авторы исследования вдохновлялись устройством тел самых прыгучих живых существ вроде кузнечиков, водомерок, некоторых пауков.
Существующие 3D-принтеры печатают заготовки на основе фотополимерной смолы — особого жидкого вещества, которое застывает под воздействием света. В медицинской печати все намного серьезнее, так как считается, что человек будет непосредственно и довольно долго контактировать с созданным с помощью 3D-принтера объектом. Ученые объясняют, что напечатанные протезы должны иметь абсолютную форму — с учетом особенностей строения организма, а также состоять из безопасных материалов, которые не вызовут аллергической реакции или отторжения.