Ноя 02

Россия построит на Луне базу с роботами и 3D принтерами

В рамках лунной программы Россия планирует создать на поверхности естественного спутника Земли долгосрочную посещаемую базу, сообщает «РИА Новости». Исследовать Луну ученые намерены с помощью роботов-аватаров. По словам Дмитрия Рогозина, поставленная задача более масштабная и ответственная, чем та, которая стояла перед США в 60-е и 70-е годы.

«Речь идет именно о создании долгосрочной базы, естественно, не обитаемой, а посещаемой. Но в основном — это переход на роботизированные системы, на аватары, которые будут решать задачи на поверхности Луны», — сказал глава «Роскосмоса».

Он не уточнил, сколько времени может пройти с начала пилотируемых полетов на Луну до создания полноценной базы. Первая высадка российского космонавта запланирована на 2030 год.

Ранее в «Роскосмосе» заявили о планах изучить возможность использования лунного грунта в качестве материала для 3D печати деталей, предназначенных для ремонта космической техники непосредственно на спутнике. Рогозин не исключает, что основой ракетного топлива станет гелий-3, добываемый здесь же.


>>>БАЗЫ ДАННЫХ(EMAIL, ТЕЛЕФОНЫ). БЕСПЛАТНО.<<<

Окт 26

В США ученые напечатали на 3D принтере работающую сердечную мышцу

Трансплантация органов ежегодно спасает множество человеческих жизней. Однако в трансплантологии есть масса недостатков: от отторжения пересаженного образца до банального отсутствия необходимого органа в конкретный момент времени. Последнюю проблему может решить создание искусственных тканей. Тем более, что значительные успехи в этой сфере случаются постоянно. Например, команда врачей из стартапа BIOLIFE4D сумела напечатать на 3D-принтере материал, пригодный для создания сердечной мышцы.
Реализовать подобное получилось благодаря особой технологии органической 3D-печати, которая при помощи доступных технологий позволяет создавать жизнеспособные ткани из живых органов. Специалисты из BIOLIFE4D напечатали своего рода «пластырь» из клеток миокарда, который, конечно, не может заменить весь орган, но способен восстановить поврежденный участок после, например, инфаркта миокарда или другого серьезного повреждения органа. При этом «пластырь» является биологически инертными и биосовместимым, легко вступая во взаимодействие с клетками сердца.

Однако планы корпорации BIOLIFE4D достаточно амбициозны. Помимо того, что планируется массовое внедрение «пластыря для сердца» в медицинскую практику, так ученые еще и нацелены на то, чтобы напечатать полноценное функционирующее человеческое сердце. На данный момент основной преградой является сложность воспроизведения анатомических структур органа при помощи технологий 3D-печати. Но эксперты настроены оптимистично и если у них получится – это может стать настоящим прорывом в медицине и трансплантологии. Ведь, в теории, напечатать можно будет и другие органы.


>>>БАЗЫ ДАННЫХ(EMAIL, ТЕЛЕФОНЫ). БЕСПЛАТНО.<<<

Сен 04

Уличный архитектурный макет Троицкой церкви

Хочу кратко рассказать об уличном архитектурном макете храма, который нашей компании посчастливилось сделать. Макет был сделан в рамкахПроекта “Утраченные храмы”
Троицкая церковь была построена в 1-й трети 19 века. При Советской власти использовалась, как водится, не по назначению. Во время войны была частично разрушена, и окончательно снесена в 50-е годы прошлого столетия.
Поступил заказ от мецената, решившего возродить память об утраченных храмах в виде доступного для обозрения уличного макета.
Исходными данными были несколько старых фото и неточная высота объекта.


Continue reading


>>>БАЗЫ ДАННЫХ(EMAIL, ТЕЛЕФОНЫ). БЕСПЛАТНО.<<<

Июл 07

3D печать: патентное и авторское право

Энтузиасты 3D печати с нетерпением ждали 2014 года: именно тогда истекал патент на метод селективного лазерного спекания (технологию 3D-печати изделий из сухих смесей с помощью лазера). Этот метод принес владельцам патента, компании 3D Systems, известность и миллиардную прибыль; его применяли в архитектуре, машиностроении, авиакосмической промышленности и в создании арт-объектов. Как и предсказывали эксперты, по истечении срока патента случился настоящий бум в применении метода: производители начали экспериментировать с технологией, появились новые принтеры, рынок стал более конкурентным, а оборудование упало в цене.

Это лишь один яркий пример влияния патентного права на состояние индустрии. С 2014 года аддитивное производство успело пережить настоящий изобретательский бум, отмеченный десятками тысяч выданных патентов. Сейчас этот бум, похоже, закончился. Индустрия переходит к чему-то новому.

Отчет ресурса ificlaims.com, крупнейшей частной базы опубликованных патентов, показывает: в США за последние 5 лет (с 2013 по 2017) число патентов в сфере аддитивных технологий росло примерно на 35% каждый год. В 2017 году патентным бюро США было выдано свыше 320 тыс. свидетельств, что стало новым рекордом. Больший рост показала только индустрия электронных сигарет (45% в год); вплотную к результату приблизились технологии машинного обучения (рост на 34% в год).

Мировая статистика примерно соответствует данным США, но абсолютный рекорд в ней принадлежит 2016 году. Поисковик Google Patents за этот период выдает данные о 140 тыс. патентов, содержащих слова «additive manufacturing» и 46 тыс. — со словами «3d printing».

В 2017 году «изобретательский бум» пошел на спад, а в 2018-м (по сравнению с аналогичным периодом прошлого года) он и вовсе иссяк. Вероятно, изобретатели изобрели и запатентовали все, что было возможно, и сейчас перешли непосредственно к разработке серийных моделей принтеров. Как показывает опыт, от момента регистрации патента до выпуска изделия на рынок обычно проходит несколько лет. Continue reading


>>>БАЗЫ ДАННЫХ(EMAIL, ТЕЛЕФОНЫ). БЕСПЛАТНО.<<<

Июн 12

Портативный 3D принтер кожи

Ученые из Университета Торонто разработали портативный 3D-принтер кожи, который поможет в лечении глубоких ран. Это первое устройство, способное создавать ткань, депонировать и устанавливать на месте в течение двух минут или меньше. Исследование, проведенное студентом Навидом Хакими под руководством доцента Акселя Гюнтера, было опубликовано в журнале Lab on a Chip.
Когда образуется глубокая рана на коже, может быть повреждено все три слоя кожи — эпидерма, дерма и гиподерма. В настоящее время предпочтительным лечением является взятие эпидермопилярного лоскута для трансплантации кожи, когда часть здоровой донорской кожи прививается на поверхностный эпидермис и часть лежащей в основе дермы.
Кожная пластика при больших ранах требует достаточного количества кожи здорового донора, чтобы покрыть все три слоя, поэтому ее редко удается осуществить на месте. Большая часть поверхности раны остается «непокрытой», что приводит к не самым лучшим исходам.
Хотя существует довольно много заменителей кожи, они еще не так широко используются в клинических условиях.
Ученые полагают, что их принтер — это платформа, способная преодолеть эти барьеры, улучшить процесс заживления кожи. Карманный принтер кожи похож на диспенсер туалетной бумаги — только вместо рулона в нем микроустройство, образующее листы ткани. Вертикальные полоски «биочернил», состоящие из белковых биоматериалов вроде коллагена и фибрина, в совокупности формируют каждую пластинку кожи. Принтер крайне портативный и обещает возможность адаптироваться к специфике каждого пациента и характеристике раны. Continue reading


>>>БАЗЫ ДАННЫХ(EMAIL, ТЕЛЕФОНЫ). БЕСПЛАТНО.<<<

Май 10

Методика 3D печати авиационных компонентов

Специалисты ПАО «Ил» и воронежского авиазавода ПАО «ВАСО» отрабатывают методику 3D печати авиационных компонентов. Пока что аддитивные технологии применяются в производстве полноразмерных макетов, однако в будущем предприятия планируют освоить серийное производство некоторых функциональных деталей.
Первый 3D печатный образец представляет собой макет воздухозаборника сложной конструкции для установки на первый летный образец легкого военно-транспортного самолета Ил-112В. Макет предназначен для корректировки мест крепления частей гидросистемы и более оперативной подготовки самолета к первому испытательному полету.
«Так как Ил-112В создается с нуля, многие детали и комплектующие в процессе установки на самолет требуют доработки. Мы начали использовать 3D-принтер, чтобы понять, насколько верны или неверны были наши расчеты. Такие технологии позволяют не прерываться на доработку готовых изделий, что, в свою очередь, существенно сокращает сроки монтажа оборудования и удешевляет процесс производства», – поясняет первый заместитель генерального директора ПАО «Ил» Павел Черенков.
Ил-112 должен прийти на смену транспортным самолетам Ан-26. Самолет разрабатывается в военной и гражданской версиях, а также рассматривается в качестве платформы для создания беспилотной транспортной системы. Работы над грузовым беспилотником ведутся совместно с научно-промышленной группой «Кронштадт». Первый полет пилотируемой версии должен состояться во второй половине текущего года.


>>>БАЗЫ ДАННЫХ(EMAIL, ТЕЛЕФОНЫ). БЕСПЛАТНО.<<<

Апр 05

Грудную клетку напечатали на 3D принтере

Врачи госпиталя Моррисон в британском городе Суонси реконструировали с помощью 3D принтера грудную клетку своего пациента. 71-летнему Питеру Мэггзу из-за раковой опухоли пришлось удалить половину грудной кости и три ребра, сообщает ABMU Health Board.

Как правило, в таких случаях хирурги отливают протез из медицинского цемента во время операции, но технология 3D-печати позволила изготовить имплант из титанового сплава и сократить время операции на 2 часа. При изготовлении протеза использовалась компьютерная томография грудной клетки Мэггза. Это один из первых случаев печати подобных протезов в Британии.

Операция длилась восемь часов. По словам врачей, имплант сел идеально, и они планируют практиковать такое протезирование и в будущем.


>>>БАЗЫ ДАННЫХ(EMAIL, ТЕЛЕФОНЫ). БЕСПЛАТНО.<<<

Фев 07

Перспективы 3d печати в России

Аддитивная печать — самая перспективная технология, которая в ближайшем будущем обещает охватить все мыслимые сферы науки и техники. Принтеры, печатающие металлическими порошками, сплавляемыми лазером, способны изготовить и турбину двигателя самолёта, и ювелирный шедевр похлеще пасхальных яиц Карла Фаберже. Как обстоят дела с развитием аддитивных принтеров и рынка материалов для них в России?

Изобретателем 3D принтера принято считать американца Чака Халла, директора компании 3D Systems. В 1984 году он запатентовал аппарат для так называемой стереолитографии — ведь само слово “3D-принтер” появилось много лет спустя. Стереолитограф Халла “печатал” объёмные детали и фигуры из специального жидкого полимера, который становился твёрдым в ультрафиолетовом свете. Собственно, “печатью” этот процесс называть не вполне верно — мощный и тонкий ультрафиолетовый луч двигался согласно компьютерной модели по ёмкости с фотополимеризующейся жидкостью, как бы “замораживая” её в нужных местах.

Следующий шаг сделал Скотт Крамп, владелец компании Stratasys. Всего два года спустя после Халла он разработал и начал выпускать устройство, работающее по принципу, используемому и по сей день: “печатающая” головка принтера, управляемая компьютером, двигалась согласно трёхмерной модели и слой за слоем “выращивала” деталь капельками расплавленного пластика. Сам же термин “3D-принтер” впервые прозвучал в 1995 году в стенах Массачусетского технологического института.

В середине 2000-х появились первые принтеры для домашнего использования, печатавшие термоголовками, в которые подавалась пластмассовая проволока. Называлось это FDM — технология послойного наплавления. Стоили они несколько десятков тысяч долларов… Сегодня аналогичные устройства может позволить себе едва ли не каждый — цены стартуют с 8–10 тысяч рублей! На домашних 3D-принтерах можно напечатать необычную кружку, компьютерную мышку, фигурку-игрушку, шестерёнку для сломавшейся кофемолки и многое другое. Технология трёхмерной печати расширилась необыкновенно: огромные строительные принтеры печатают дома из бетона, компактные кулинарные принтеры — сувенирные композиции из шоколада…

Из пластика можно печатать не слишком прочные детали и предметы — сам материал мягкий… Но несколько лет назад в 3D-мире началась новая эра — эпоха печати из металлических материалов. Наибольшее промышленное применение получило два типа аддитивных технологий изготовления металлических деталей — прямой подвод энергии и материала (DMD) и синтез на подложке (PBF). В первом случае печатающая головка слой за слоем движется по контуру будущей детали, подавая порции металлического порошка или проволоки, а мощный источник теплового излучения (лазерный, электронный луч, плазма) расплавляет его, формируя цельнометаллическую деталь. Во втором случае сплавляются области предварительно нанесённых слоёв металлического порошка. Эти революционные технологии принято называть аддитивным производством из металла — Metal Additive Manufacturing. Continue reading


>>>БАЗЫ ДАННЫХ(EMAIL, ТЕЛЕФОНЫ). БЕСПЛАТНО.<<<